Cart (Loading....) | Create Account
Close category search window
 

Decentralized probabilistic scheduling: application to computational grids

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

Computational grids (CGs) are large scale distributed networks of peer clusters of computing resources bounded by a decentralized management framework for the purpose of providing computing services, called grid services. The scheduling problem consists in finding the clusters that host the required set of grid services with a sufficient available capacity to handle a user service request in compliance with some specified quality of service. The interplay of intermittent resource participation, resource load dynamics, network latency and processing delay, and random subsystem failures creates a ubiquitous uncertainty on the state of the grid capacity to handle user requests. In addition to the need to account for this uncertainty, the scheduling strategy has to be decentralized since a CG spans distinct management domains. In this paper, we propose a decentralized scheduling strategy that views the grid service capacity as a stochastic process modeled by a Markov chain. The proposed scheduling scheme uses this model to predict the future local availability of resources. This is consolidated by a confidence model that approximates the future ability of peer clusters to successfully handle delegated service requests. The scalability of the proposed scheduling strategy is illustrated through simulation

Published in:

Control Applications, 2005. CCA 2005. Proceedings of 2005 IEEE Conference on

Date of Conference:

28-31 Aug. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.