By Topic

A generalizing fuzzy model for shallow cavity flows under different mach regimes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Efe, M.O. ; Dept. of Electr. & Electron. Eng., TOBB Univ. of Econ. & Technol., Ankara ; Debiasi, M. ; Yan, P. ; Ozbay, H.
more authors

Modeling of a flow passing over a shallow cavity is an interesting problem as the internal dynamics are inextricably intertwined due to the Navier-Stokes equations. The origin of the cavity flow identification problem is the desire for reducing the skin friction in aerial vehicles through an active control effort. As there is not a well developed closed-loop scheme, towards the goal of feedback control, the first step becomes to develop a suitable dynamic model imitating the behavior of the plant under certain operating conditions. For this purpose, we present an approach exploiting the fuzzy inference mechanisms. Fuzzy logic is a practical tool for expressing human expertise in the form of if-then statements. The idea in the fuzzy identification is to perform local observations from the flow field and to find a fuzzy interpolation scheme over the sensory information. The results we have observed indicate that a classical non-adaptive fuzzy model is able to perform one step ahead prediction of the critically essential behavior observed at the cavity floor

Published in:

Control Applications, 2005. CCA 2005. Proceedings of 2005 IEEE Conference on

Date of Conference:

28-31 Aug. 2005