By Topic

Efficient selection of discriminative genes from microarray gene expression data for cancer diagnosis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Huang, D. ; Dept. of Electron. Eng., City Univ. of Hong Kong, Kowloon, China ; Chow, T.W.S. ; Ma, E.W.M. ; Jinyan Li

A new mutual information (MI)-based feature-selection method to solve the so-called large p and small n problem experienced in a microarray gene expression-based data is presented. First, a grid-based feature clustering algorithm is introduced to eliminate redundant features. A huge gene set is then greatly reduced in a very efficient way. As a result, the computational efficiency of the whole feature-selection process is substantially enhanced. Second, MI is directly estimated using quadratic MI together with Parzen window density estimators. This approach is able to deliver reliable results even when only a small pattern set is available. Also, a new MI-based criterion is proposed to avoid the highly redundant selection results in a systematic way. At last, attributed to the direct estimation of MI, the appropriate selected feature subsets can be reasonably determined.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:52 ,  Issue: 9 )