By Topic

Low-voltage MOS linear transconductor/squarer and four-quadrant multiplier for analog VLSI

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Demosthenous, A. ; Dept. of Electron. & Electr. Eng., Univ. Coll. London, UK ; Panovic, M.

Analog computations such as four-quadrant multiplication, linear voltage-to-current conversion and sum-square or difference-square are fundamental for many analog signal processing systems. All these functions can be realized based on the principle of the linearized differential pair using floating-voltage sources. This paper describes an improved practical realization of this principle, which is particularly suited to analog VLSI computational systems. The proposed class-AB analog cells are very compact, exhibit low total harmonic distortion and low nonlinearity, have a wide bandwidth, and are compatible with low-power and low-voltage operation. A mathematical discussion on stability and harmonic distortion of the proposed realization is presented. Both simulated results and measurements from fabricated cell samples in a 0.8-μm CMOS process are given. The described circuits operate from a single 2-V power supply.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:52 ,  Issue: 9 )