By Topic

Kalman filtering in extended noise environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Diversi, R. ; Dept. of Electron., Univ. of Bologna, Italy ; Guidorzi, R. ; Soverini, U.

This note introduces an extended environment for Kalman filtering that considers also the presence of additive noise on input observations in order to solve the problem of optimal (minimal variance) estimation of noise-corrupted input and output sequences. This environment includes as subcases both errors-in-variables filtering (optimal estimate of inputs and outputs from noisy observations) and traditional Kalman filtering (optimal estimate of state and output in presence of state and output noise). A Monte Carlo simulation shows that the performance of this extended filtering technique leads to the expected minimal variance estimates.

Published in:

Automatic Control, IEEE Transactions on  (Volume:50 ,  Issue: 9 )