Cart (Loading....) | Create Account
Close category search window
 

Application of asymptotic expansions to model two-dimensional induction heating systems. Part I: calculation of electromagnetic field distribution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bioul, F. ; Center for Syst. Eng. & Appl. Mech., Univ. Catholique de Louvain, Louvain-la-Neuve, Belgium ; Dupret, F.

We analyze the effect of a radio-frequency alternating magnetic field generated in the vicinity of solid or liquid electrically conducting components, such as used in induction heating processes. The field can penetrate only into a thin magnetic skin located beneath the conductor surface, where the generated heat and stresses are concentrated. This most often leads to major numerical difficulties, especially for very thin magnetic skins. Therefore, we have developed a mathematical model of the electromagnetic field distribution inside the conductors for planar and axisymmetric configurations by using a matched asymptotic expansion technique. Among other features, our method takes the curvature of the conductor surfaces into account. A practical numerical implementation of our model is detailed here, and numerical calculations are carried out in order to extend the model to limiting cases such as curvature discontinuities and corners. These calculations compare successfully with complete numerical computations.

Published in:

Magnetics, IEEE Transactions on  (Volume:41 ,  Issue: 9 )

Date of Publication:

Sept. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.