By Topic

Substrate coupling in a high-gain 30-Gb/s SiGe amplifier-modeling, suppression, and measurement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
W. Steiner ; Ruhr-Univ. Bochum, Germany ; H. -M. Rein ; J. Berntgen

For demonstrating substrate coupling in high-gain broadband amplifiers, a limiting differential transimpedance amplifier has been developed and fabricated in a SiGe bipolar technology. It operates up to 30 Gb/s and stands out for a maximum (nonlinear) transimpedance in the limiting mode of 25 kΩ, resulting in a gain × speed product as high as 750 kΩ·Gb/s. This record value could be achieved by applying several techniques for suppression of noise coupling simultaneously. The effectiveness of each technique was verified experimentally by measuring the output eye diagrams of different mounted amplifier versions. The high accuracy potential of the substrate modeling tools applied for optimizing the amplifier design has been demonstrated separately by measurements on special (mounted) test structures up to 40 GHz. These investigations also showed the strong degradation of shielding measures by bond inductances with increasing frequency.

Published in:

IEEE Journal of Solid-State Circuits  (Volume:40 ,  Issue: 10 )