Cart (Loading....) | Create Account
Close category search window

Analysis of the effect of thermal chirp on interferometric homodyne and heterodyne crosstalk in optical communication systems employing directly Modulated DFB lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rotem, E. ; Electr. & Comput. Eng. Dept., Ben Gurion Univ., Beer-Sheva, Israel ; Sadot, D.

A closed-form expression is derived for the probability density function (pdf) of the beat noise created by homodyne and heterodyne interferometric crosstalk in optical communication systems employing directly modulated distributed feedback lasers at bit rates between 155 Mb/s and 2.5 Gb/s. Thermal chirp is shown to be the predominant chirp mechanism affecting homodyne-crosstalk-induced penalty at bit rates up to 2.5 Gb/s. Theoretical calculations of the crosstalk-induced power penalty are verified experimentally.

Published in:

Lightwave Technology, Journal of  (Volume:23 ,  Issue: 9 )

Date of Publication:

Sept. 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.