By Topic

Robust sliding mode control of 4WS vehicles for automatic path tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Qunzhi Zhou ; Key Lab. of Complex Syst. & Intelligent Sci., Chinese Acad. of Sci., Beijing, China ; Feiyue Wang ; Li Li

This paper investigates the use of four-wheel steering system (4WS) for the automatic vehicle control in the context of path tracking. The 4WS vehicle is assumed to be set up in a previously studied look-down reference system with sensors installed on the vehicle's front and rear bumpers to measure its lateral displacements from the reference path. Past research in the path tracking control have showed the difficulties to design a controller that is robust against the intensive vehicle modeling uncertainties and disturbances. In this paper, noticed the new dynamic characteristics of 4WS vehicles, we firstly found a new robust sliding mode controller for a class of linear systems and then apply it to the path tracking problem of 4WS vehicles. Both theoretical analysis and simulations show that with the proposed controller, the system's tracking accuracy, stability and robustness against the parameter variances and external disturbances, especially the changes of road friction condition, longitudinal velocity and crosswind forces, are identically guaranteed.

Published in:

Intelligent Vehicles Symposium, 2005. Proceedings. IEEE

Date of Conference:

6-8 June 2005