By Topic

A monocular vision-based occupant classification approach for smart airbag deployment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yan Zhang ; Delphi Electron. & Safety, Kokomo, IN, USA ; Kiselewich, S.J. ; Bauson, W.A.

Occupant classification is essential to a smart airbag system that can either turn off or deploy in a less harmful way according to the type of the occupants in the front seat. This paper presents a monocular vision-based occupant classification approach to classify the occupants into five categories including empty seats, adults in normal position, adults out of position, front-facing child/infant seats, and rear-facing infant seats. The proposed approach consists of image representation and pattern classification. The image representation step computes Haar wavelets and edge features from the monochrome video frames. A support vector machine (SVM) classifier next determines the occupant category based on the representative features. We have tested our approach on a large variety of indoor and outdoor images acquired under various illumination conditions for occupants with different appearances, sizes and shapes. With a strict occupant exclusive training/testing split, our approach has achieved an average correct classification rate of 97.18% among the five occupant categories.

Published in:

Intelligent Vehicles Symposium, 2005. Proceedings. IEEE

Date of Conference:

6-8 June 2005