By Topic

Traffic sign shape classification evaluation I: SVM using distance to borders

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Lafuente-Arroyo, S. ; Dept. de Teoria de la Senal y Comunicaciones, Univ. de Alcala, Madrid, Spain ; Gil-Jimenez, P. ; Maldonado-Bascon, R. ; Lopez-Ferreras, F.
more authors

This paper deals with the detection and classification of traffic signs in outdoor environments. The information provided by traffic signs on roads is very important for the safety of drivers. However, in these situations the illumination conditions can not be predicted, the position and the orientation of signs in the scene are not known and other objects can block the vision of them. For these reasons we have developed an extensive test set which includes all kind of signs. In an artificial vision system, the key to recognize traffic signs is how to detect them and identify their geometric shapes. So, in this work we propose a method that uses a technique based on support vector machines (SVMs) for the classification. The patterns generated by the vectors represent the distances to borders (DtB) of the objects candidate to be traffic signs. Experimental results show the effectiveness of the proposed method.

Published in:

Intelligent Vehicles Symposium, 2005. Proceedings. IEEE

Date of Conference:

6-8 June 2005