By Topic

The marginalized particle filter for automotive tracking applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Eidehall, A. ; Vehicle Dynamics & Active Safety, Volvo Car Corp., Goteborg, Sweden ; Schon, T.B. ; Gustafsson, F.

This paper deals with the problem of estimating the vehicle surroundings (lane geometry and the position of other vehicles), which is needed for intelligent automotive systems, such as adaptive cruise control, collision avoidance and lane guidance. This results in a nonlinear estimation problem. For automotive tracking systems, these problems are traditionally handled using the extended Kalman filter. In this paper we describe the application of the marginalized particle filter to this problem. Studies using both synthetic and authentic data show that the marginalized particle filter can in fact give better performance than the extended Kalman filter. However, the computational load is higher.

Published in:

Intelligent Vehicles Symposium, 2005. Proceedings. IEEE

Date of Conference:

6-8 June 2005