By Topic

Ka-band analog front-end for software-defined direct conversion receiver

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Tatu, S.O. ; Inst. Nat. de Recherche Scientifique, Montreal, Que., Canada ; Moldovan, E. ; Ke Wu ; Bosisio, R.G.
more authors

A six-port Ka-band front-end architecture based on direct conversion for a software-defined radio application is proposed in this paper. The direct conversion is accomplished using six-port technology. In order to demodulate various phase-shift-keying/quadrature-amplitude-modulation (PSK/QAM) modulated signals at a high bit rate, a new analog baseband circuit was specially designed according to the I/Q equations presented in the theoretical part. An experimental prototype has been fabricated and measured. Simulation and measurement results for binary PSK, quaternary PSK (QPSK), 8 PSK, 16 PSK, and 16 QAM modulated signals at a bit rate up to 40 Mb/s are presented to validate the proposed approach. A software-defined radio can be designed using the new front-end and only two analog-to-digital converters (ADCs) because the I/Q output signals are generated by analog means. Previous six-port receivers make use of four ADCs to read the six-port dc levels and require digital computations to generate the I/Q output signals. With the proposed approach, the load of the signal processor will therefore be reduced and the modulation speed can be significantly increased using the same digital signal processor.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:53 ,  Issue: 9 )