By Topic

Improved FDTD subgridding algorithms via digital filtering and domain overriding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Donderici, B. ; Dept. of Electr. & Comput. Eng., Ohio State Univ., Columbus, OH, USA ; Teixeira, F.L.

In numerical simulations of Maxwell's equations for problems with disparate geometric scales, it is often advantageous to use grids of varying densities over different portions of the computational domain. In simulations involving structured finite-difference time-domain (FDTD) grids, this strategy is often referred as subgridding (SG). Although SG can lead to major computational savings, it is known to cause instabilities, spurious reflections, and other accuracy problems. In this paper, we introduce two strategies to combat these problems. First, we present an overlapped SG (OSG) approach combined with digital filters (in space). OSG can recover standard SG (SSG) schemes but it is based upon a more general, explicit separation between interpolation/decimation operations and the FDTD field update itself. This allows for a better classification of errors associated with the subgrid interface. More importantly, digital filters and phase matching techniques can be then employed to combat those errors. Second, we introduce SG with a domain overriding (SG-DO) strategy, consisting of overlapped (sub)grid regions that contain auxiliary (buffer) subdomains with perfectly matched layers (PML) to allow explicit control on the reflection and transmission properties at SG interfaces. We provide two-dimensional (2-D) numerical examples showing that residual errors from 2-D SG-DO FDTD simulations can be significantly reduced when compared to SSG schemes.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:53 ,  Issue: 9 )