Cart (Loading....) | Create Account
Close category search window

Characterization of effects of periodic and aperiodic surface distortions on membrane reflector antennas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bahadori, K. ; Dept. of Electr. Eng., Univ. of California, Los Angeles, CA, USA ; Rahmat-Samii, Y.

The focus of this paper is to characterize the effects of periodic and aperiodic surface distortions on the performance of membrane reflector antennas. Since the surface of this class of reflector antennas is very thin, it is susceptible to various types of periodic and aperiodic distortions. The particular antenna dimensions used for this study are similar to the specifications for the JPL/UCLA half scale model of second generation precipitation radar (PR-2) mission reflector. Analytical expressions are introduced to model periodic and aperiodic surfaces and based on these models the effects of distortions on the radiation performance of the antenna are simulated. Aperiodic distortions are more realistic cases of distortions due to the fact that the period of the distortions is not constant through out the reflector surface. For each case, far-field patterns of the reflector are simulated and it is shown that closed-form expressions can then be derived which result in a very efficient computational method to predict some of the unique features of these patterns including location and level of observed grating lobes. Furthermore, based on spatial Fourier analysis of the surface distortion, it is shown that deviation from periodicity in the distortions of reflector surface results in lowering these grating lobes. Parametric studies have been performed to provide design guidelines for acceptable surface behavior for large deployable membrane reflector antennas for future space borne missions.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:53 ,  Issue: 9 )

Date of Publication:

Sept. 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.