By Topic

Equivalent system model and equalization of differential impulse radio UWB systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Witrisal, K. ; Christian Doppler Lab. for Nonlinear Signal Process., Graz Univ. of Technol., Austria ; Leus, G. ; Pausini, M. ; Krall, C.

A discrete-time equivalent system model is derived for differential and transmitted reference (TR) ultra-wideband (UWB) impulse radio (IR) systems, operating under heavy intersymbol-interference (ISI) caused by multipath propagation. In the systems discussed, data is transmitted using differential modulation on a frame-level, i.e., among UWB pulses. Multiple pulses (frames) are used to convey a single bit. Time hopping and amplitude codes are applied for multi user communications, employing a receiver front-end that consists of a bank of pulse-pair correlators. It is shown that these UWB systems are accurately modeled by second-order discrete-time Volterra systems. This proposed nonlinear equivalent system model is the basis for developing optimal and suboptimal receivers for differential UWB communications systems under ISI. As an example, we describe a maximum likelihood sequence detector with decision feedback, to be applied at the output of the receiver front-end sampled at symbol rate, and an adaptive inverse modeling equalizer. Both methods significantly increase the robustness in presence of multipath interference at tractable complexity.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:23 ,  Issue: 9 )