By Topic

A DSP-based implementation of a nonlinear model reference adaptive control for a three-phase three-level NPC boost rectifier prototype

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yacoubi, L. ; Ecole de Technologie Superieure Dept. de Genie Electrique, Univ. du Quebec, Montreal, Que., Canada ; Al-Haddad, K. ; Dessaint, L.-A. ; Fnaiech, F.

In this paper, the design and the implementation of a model reference adaptive control (MRAC) applied to a three-phase three-level neutral-point-clamped (NPC) boost rectifier are presented. This control strategy is developed with a view to regulate dc output and neutral point voltages and to reduce the influence of parameter variations while maintaining unity power factor. A nonlinear multiple-input multiple-output (MIMO) state space model of the rectifier is then developed in dq0 reference frame. The proposed controller is based on the use of a feedback linearization technique followed by a robust MRAC scheme allowing the design of a suitable controller applied to the plant. The control law is designed in Simulink/Matlab and applied to the converter via a 1920-Hz pulse width modulator both executed in real time using the DS1104 DSP of dSPACE. A 1.25 kW laboratory prototype is developed for validation. The experimental results are given for different operating conditions: nominal power operation, balanced and unbalanced dc load steps, boost inductor variation, and reactive power control. The proposed control law performs perfectly in a wide operation range giving low output voltage ripple, low line-current THD, a small overshoot and a fast settling time under system parameters variation.

Published in:

Power Electronics, IEEE Transactions on  (Volume:20 ,  Issue: 5 )