Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Unsupervised segmentation based on robust estimation and color active contour models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lin Yang ; Dept. of Electr. & Comput. Eng., Rutgers Univ., Piscataway, NJ, USA ; Meer, P. ; Foran, D.J.

One of the most commonly used clinical tests performed today is the routine evaluation of peripheral blood smears. In this paper, we investigate the design, development, and implementation of a robust color gradient vector flow (GVF) active contour model for performing segmentation, using a database of 1791 imaged cells. The algorithms developed for this research operate in Luv color space, and introduce a color gradient and L2E robust estimation into the traditional GVF snake. The accuracy of the new model was compared with the segmentation results using a mean-shift approach, the traditional color GVF snake, and several other commonly used segmentation strategies. The unsupervised robust color snake with L2E robust estimation was shown to provide results which were superior to the other unsupervised approaches, and was comparable with supervised segmentation, as judged by a panel of human experts.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:9 ,  Issue: 3 )