Cart (Loading....) | Create Account
Close category search window
 

Fabrication and characterization of nano-sized SrTiO3-based oxygen sensor for near room-temperature operation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ying Hu ; Microelectron. Centre, Nanyang Technol. Univ., Singapore ; Ooi Kiang Tan ; Wenqing Cao ; Zhu, Weiguang

Nano-sized SrTiO3-based oxygen sensors were fabricated from synthesized SrTiO3 and commercial SrTiO3 using the high-energy ball milling and the thick-film screen-printing techniques. The particle sizes, microstructural properties, oxygen-sensing properties, and humidity effects of the synthesized nano-sized SrTiO3-based oxygen sensors were characterized using X-ray diffraction (XRD), transmission electron microscope, scanning electron microscope (SEM), and gas sensing measurements. Experimental results showed that the particle size of the powders was milled down to be around 27 nm. The effect of different annealing temperatures (400°C, 500°C, 600°C, 700°C, and 800°C) on the gas sensing properties of the synthesized SrTiO3 sensor from nitrogen to 20% oxygen was characterized. The commercial SrTiO3 devices annealed at 400°C, both with 0-h and 120-h milling time, were used for comparison. The optimal relative resistance (Rnitrogen/R20%oxygen) value of 6.35 is obtained for the synthesized SrTiO3 sample annealed at 400°C and operating at 40°C. This operating temperature is much lower than that of conventional metal oxide semiconducting oxygen gas sensors (300°C-500°C) and SrTiO3 oxygen gas sensors (>700°C). The response and recovery times are 1.6 and 5 min, respectively. The detected range is 1-20% oxygen. The impedance of the synthesized SrTiO3 sensor with annealing at 400°C and operating at 40°C (from 1 mHz to 10 MHz) in 20% oxygen ambient was found to be independent of the relative humidity (dry, 20% RH, 80% RH, near 100% RH).

Published in:

Sensors Journal, IEEE  (Volume:5 ,  Issue: 5 )

Date of Publication:

Oct. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.