Cart (Loading....) | Create Account
Close category search window

Constructing and analyzing a large-scale gene-to-gene regulatory network Lasso-constrained inference and biological validation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gustafsson, M. ; Dept. of Sci. & Tech., Linkoping Univ., Sweden ; Hornquist, M. ; Lombardi, A.

We construct a gene-to-gene regulatory network from time-series data of expression levels for the whole genome of the yeast Saccharomyces cerevisae, in a case where the number of measurements is much smaller than the number of genes in the network. This network is analyzed with respect to present biological knowledge of all genes (according to the Gene Ontology database), and we find some of its large-scale properties to be in accordance with known facts about the organism. The linear modeling employed here has been explored several times, but due to lack of any validation beyond investigating individual genes, it has been seriously questioned with respect to its applicability to biological systems. Our results show the adequacy of the approach and make further investigations of the model meaningful.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:2 ,  Issue: 3 )

Date of Publication:

July-Sept. 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.