By Topic

Correlation of RF signals during angular compounding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Quan Chen ; Dept. of Medical Phys., Wisconsin Univ., Madison, WI, USA ; Gerig, A.L. ; Techavipoo, U. ; Zagzebski, J.A.
more authors

A theoretical analysis of the correlation between radio-frequency (RF) echo signal data acquired from the same location but at different angles is presented. The accuracy of the theoretical results is verified with computer simulations. Refinements to previous analyses of the correlation of RF signals originating from the same spatial location at different angular positions are made. We extend the analysis to study correlation of RF signals coming from different spatial locations and eventually correlation of RF signal segments that intersect at the same spatial location. The theory predicts a faster decorrelation with a change in the insonification angle for longer RF echo signal segments. As the RF signal segment becomes shorter, the decorrelation rate with angle is slower and approaches the limit corresponding to the correlation of RF signals originating from the same spatial location. Theoretical results provide a clear understanding of angular compounding techniques used to improve the signal-to-noise ratio in ultrasonic parametric imaging and in elastography.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:52 ,  Issue: 6 )