By Topic

Estimation of delay variations due to random-dopant fluctuations in nanoscale CMOS circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mahmoodi, H. ; Dept. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA ; Mukhopadhyay, S. ; Roy, K.

In nanoscale CMOS circuits the random dopant fluctuations (RDF) cause significant threshold voltage (Vt) variations in transistors. In this paper, we propose a semi-analytical estimation methodology to predict the delay distribution [Mean and Standard Deviation (STD)] of logic circuits considering Vt variation in transistors. The proposed method is fast and can be used to predict delay distribution in nanoscale CMOS technologies both at the circuit and the device design phase. The method is applied to predict the delay distributions in different logic gates and flip-flops and is verified with detail Monte Carlo simulations. It is observed that a 30% spread (STD/Mean) in Vt variation results in 5% spread in the delay of logic gates (inverter, NAND, etc.). The effect of Vt variation due to RDF is more significant in the setup time (STD/Mean = 11%) and clock-to-output delay (STD/Mean = 5% to 25%) of flip-flops.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:40 ,  Issue: 9 )