By Topic

Registration-assisted segmentation of real-time 3-D echocardiographic data using deformable models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Zagrodsky, V. ; Dept. of Biomed. Eng., Lerner Res. Inst., Cleveland, OH, USA ; Walimbe, V. ; Castro-Pareja, C.R. ; Jian Xin Qin
more authors

Real-time three-dimensional (3-D) echocardiography is a new imaging modality that presents the unique opportunity to visualize the complex 3-D shape and motion of the left ventricle (LV) in vivo and to measure the associated global and local function parameters. To take advantage of this opportunity in routine clinical practice, automatic segmentation of the LV in the 3-D echocardiographic data, usually hundreds of megabytes large, is essential. We report a new segmentation algorithm for this task. Our algorithm has two distinct stages, initialization of a deformable model and its refinement, which are connected by a dual "voxel + wiremesh" template. In the first stage, mutual-information-based registration of the voxel template with the image to be segmented helps initialize the wiremesh template. In the second stage, the wiremesh is refined iteratively under the influence of external and internal forces. The internal forces have been customized to preserve the nonsymmetric shape of the wiremesh template in the absence of external forces, defined using the gradient vector flow approach. The algorithm was validated against expert-defined segmentation and demonstrated acceptable accuracy. Our segmentation algorithm is fully automatic and has the potential to be used clinically together with real-time 3-D echocardiography for improved cardiovascular disease diagnosis.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:24 ,  Issue: 9 )