By Topic

Sparse transformations and preconditioners for 3-D capacitance extraction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shu Yan ; Dept. of Electr. Eng., Texas A&M Univ., College Station, TX, USA ; Sarin, V. ; Weiping Shi

Three-dimensional (3-D) capacitance-extraction algorithms are important due to their high accuracy. However, the current 3-D algorithms are slow and thus their application is limited. In this paper, we present a novel method to significantly speed up capacitance-extraction algorithms based on boundary element methods (BEMs), under uniform and multiple dielectrics. The n×n coefficient matrix in the BEM is dense, even when approximated with the fast multipole method or hierarchical-refinement method, where n is the number of panels needed to discretize the conductor surfaces and dielectric interfaces. As a result, effective preconditioners are hard to obtain and iterative solvers converge slowly. In this paper, we introduce a linear transformation to convert the n×n dense coefficient matrix into a sparse matrix with O(n) nonzero entries, and then use incomplete factorization to produce a very effective preconditioner. For the k×k bus-crossing benchmark, our method requires at most four iterations, whereas previous best methods such as FastCap and HiCap require 10-20 iterations. As a result, our algorithm is up to 70 times faster than FastCap and up to 2 times faster than HiCap on these benchmarks. Additional experiments illustrate that our method consistently outperforms previous best methods by a large magnitude on complex industrial problems with multiple dielectrics.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:24 ,  Issue: 9 )