By Topic

Multiple SVM-RFE for gene selection in cancer classification with expression data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kai-Bo Duan ; BioInformatics Res. Centre, Nanyang Technol. Univ., Singapore ; J. C. Rajapakse ; Haiying Wang ; F. Azuaje

This paper proposes a new feature selection method that uses a backward elimination procedure similar to that implemented in support vector machine recursive feature elimination (SVM-RFE). Unlike the SVM-RFE method, at each step, the proposed approach computes the feature ranking score from a statistical analysis of weight vectors of multiple linear SVMs trained on subsamples of the original training data. We tested the proposed method on four gene expression datasets for cancer classification. The results show that the proposed feature selection method selects better gene subsets than the original SVM-RFE and improves the classification accuracy. A Gene Ontology-based similarity assessment indicates that the selected subsets are functionally diverse, further validating our gene selection method. This investigation also suggests that, for gene expression-based cancer classification, average test error from multiple partitions of training and test sets can be recommended as a reference of performance quality.

Published in:

IEEE Transactions on NanoBioscience  (Volume:4 ,  Issue: 3 )