By Topic

Pattern discovery on Australian medical claim data - a systematic approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ah Chung Tsoi ; Australian Res. Council, Canberra, ACT, Australia ; Zhang, S. ; Hagenbuchner, M.

The national health insurance system in Australia records details on medical services and claims provided to its population. An effective method to the discovery of temporal behavioral patterns in the data set is proposed in this paper. The method consists of a two-step approach which is applied recursively to the data set. First, a clustering algorithm is used to segment the data into classes. Then, hidden Markov models are employed to find the underlying temporal behavioral patterns. These steps are applied recursively to features extracted from the data set until convergence. The main objective is to minimize the misclassification of patient profiles into various classes. This results in a hierarchical tree model consisting of a number of classes; each class groups similar patient temporal behavioral patterns together. The capabilities of the proposed method are demonstrated through the application to a subset of the Australian national health insurance data set. It is shown that the proposed method not only clusters data into various categories of interest, but it also automatically marks the periods in which similar temporal behavioral patterns occurred.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:17 ,  Issue: 10 )