Cart (Loading....) | Create Account
Close category search window
 

Fast algorithms for frequent itemset mining using FP-trees

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Grahne, G. ; Dept. of Comput. Sci., Concordia Univ., Montreal, Que., Canada ; Zhu, J.

Efficient algorithms for mining frequent itemsets are crucial for mining association rules as well as for many other data mining tasks. Methods for mining frequent itemsets have been implemented using a prefix-tree structure, known as an FP-tree, for storing compressed information about frequent itemsets. Numerous experimental results have demonstrated that these algorithms perform extremely well. In this paper, we present a novel FP-array technique that greatly reduces the need to traverse FP-trees, thus obtaining significantly improved performance for FP-tree-based algorithms. Our technique works especially well for sparse data sets. Furthermore, we present new algorithms for mining all, maximal, and closed frequent itemsets. Our algorithms use the FP-tree data structure in combination with the FP-array technique efficiently and incorporate various optimization techniques. We also present experimental results comparing our methods with existing algorithms. The results show that our methods are the fastest for many cases. Even though the algorithms consume much memory when the data sets are sparse, they are still the fastest ones when the minimum support is low. Moreover, they are always among the fastest algorithms and consume less memory than other methods when the data sets are dense.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:17 ,  Issue: 10 )

Date of Publication:

Oct. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.