By Topic

Using one-class and two-class SVMs for multiclass image annotation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

We propose using one-class, two-class, and multiclass SVMs to annotate images for supporting keyword retrieval of images. Providing automatic annotation requires an accurate mapping of images' low-level perceptual features (e.g., color and texture) to some high-level semantic labels (e.g., landscape, architecture, and animals). Much work has been performed in this area; however, there is a lack of ability to assess the quality of annotation. In this paper, we propose a confidence-based dynamic ensemble (CDE), which employs a three-level classification scheme. At the base-level, CDE uses one-class support vector machines (SVMs) to characterize a confidence factor for ascertaining the correctness of an annotation (or a class prediction) made by a binary SVM classifier. The confidence factor is then propagated to the multiclass classifiers at subsequent levels. CDE uses the confidence factor to make dynamic adjustments to its member classifiers so as to improve class-prediction accuracy, to accommodate new semantics, and to assist in the discovery of useful low-level features. Our empirical studies on a large real-world data set demonstrate CDE to be very effective.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:17 ,  Issue: 10 )