By Topic

End-to-end data reduction and hardware accelerated rendering techniques for visualizing time-varying non-uniform grid volume data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Akiba, H. ; Inst. for Data Anal. & Visualization, Univ. of California at Davis, USA ; Kwan-Liu Ma ; Clyne, J.

We present a systematic approach for direct volume rendering terascale-sized data that are time-varying, and possibly non-uniformly sampled, using only a single commodity graphics PC. Our method employs a data reduction scheme that combines lossless, wavelet-based progressive data access with a user-directed, hardware-accelerated data packing technique. Data packing is achieved by discarding data blocks with values outside the data interval of interest and encoding the remaining data in a structure that can be efficiently decoded in the GPU. The compressed data can be transferred between disk, main memory, and video memory more efficiently, leading to more effective data exploration in both spatial and temporal domains. Furthermore, our texture-map based volume rendering system is capable of correctly displaying data that are sampled on a stretched, Cartesian grid. To study the effectiveness of our technique we used data sets generated from a large solar convection simulation, computed on a non-uniform, 504×504×2048 grid.

Published in:

Volume Graphics, 2005. Fourth International Workshop on

Date of Conference:

20-21 June 2005