Cart (Loading....) | Create Account
Close category search window

A three-dimensional stacked fin-CMOS technology for high-density ULSI circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xusheng Wu ; Dept. of Electr. & Electron. Eng., Hong Kong Univ. of Sci. & Technol., Kowloon, China ; Chan, Philip C.H. ; Shengdong Zhang ; Chuguang Feng
more authors

In this paper, a three-dimensional CMOS technology is proposed and implemented using stacked Fin-CMOS (SF-CMOS) architecture. The technology is based on a double layer silicon-on-insulator wafer formed by two oxygen implants to create two single-crystal silicon films with an oxide isolation layer in between. The proposed approach achieves a 50% area reduction and significant shortening of the wiring distance between active devices through vertical connection when compared with conventional planar CMOS technology. The SF-CMOS technology also inherits the scalability and two-dimensional processing compatibility of the FinFET structure. SF-CMOS devices and simple circuits were fabricated and characterized.

Published in:

Electron Devices, IEEE Transactions on  (Volume:52 ,  Issue: 9 )

Date of Publication:

Sept. 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.