By Topic

Modified PEDOT-PSS Conducting Polymer as S/D Electrodes for Device Performance Enhancement of P3HT TFTs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fengliang Xue ; Inst. for Micromanufacturing, Louisiana Tech Univ., Ruston, LA, USA ; Yi Su ; Varahramyan, K.

Poly(3,4-ethylenedioxythiophene)—Polystyrene Sulfonate (PEDOT-PSS) is the most widely used conducting polymer as electrode material in organic (polymer) devices. However, commercially available PEDOT-PSS in our experiment has a relatively low conductivity that reduces the device performance when it is used for electrode material. The purchased PEDOT-PSS has been mixed with polar solvent dimethyl sulfoxide, which increases its conductivity from 0.07 to 30 S/cm. The enhanced conductivity has long-term stability at room temperature and short-term stability at high temperature (100$^circ$C) in air ambient. The modified PEDOT-PSS has been inkjet printed and used as source/drain (S/D) electrodes for poly(3-hexylthiophene) (P3HT) thin-film transistors (TFTs). Unmodified PEDOT-PSS and gold have also been used as S/D electrodes for comparison. The TFTs with modified PEDOT-PSS electrodes show significantly improved performance over the devices with unmodified PEDOT-PSS electrodes and are similar to the devices with gold electrodes. The difference in device performance mainly results from parasitic series resistance. In the devices with unmodified PEDOTT-PSS, high electrode series resistance has several effects on devices, e.g., restricted current growth at high negative gate voltage, reduced on/off current ratio and current output capability.

Published in:

Electron Devices, IEEE Transactions on  (Volume:52 ,  Issue: 9 )