By Topic

Convergence Analysis and Optimal Scheduling for Multiple Concatenated Codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Brannstrom, F. ; Dept. of Comput. Eng., Chalmers Univ. of Technol., Goteborg, Sweden ; Rasmussen, L.K. ; Grant, A.J.

An interesting practical consideration for decoding of serial or parallel concatenated codes with more than two components is the determination of the lowest complexity component decoder schedule which results in convergence. This correspondence presents an algorithm that finds such an optimal decoder schedule. A technique is also given for combining and projecting a series of three-dimensional extrinsic information transfer (EXIT) functions onto a single two-dimensional EXIT chart. This is a useful technique for visualizing the convergence threshold for multiple concatenated codes and provides a design tool for concatenated codes with more than two components.

Published in:

Information Theory, IEEE Transactions on  (Volume:51 ,  Issue: 9 )