Cart (Loading....) | Create Account
Close category search window

A new full-vectorial FD-BPM scheme: application to the analysis of magnetooptic and nonlinear saturable media

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Alcantara, L.D.S. ; Electr. & Comput. Eng. Dept., Fed. Univ. of Para, Brazil ; Teixeira, F.L. ; César, A.C. ; Borges, B.V.

A new three-dimensional (3-D) full-vectorial finite-difference (FD)-based beam-propagation method (BPM) is introduced for the analysis of magnetooptic and nonlinear materials. The refractive-index growth in the nonlinear material is allowed to saturate at high optical power densities (cubic-quintic media). The new formalism is capable of handling any combination of linear, nonlinear, and magnetooptic media, and combines, for the first time, the alternating-direction implicit technique (to improve computational performance) with the leapfrog longitudinal scheme (to simplify the solution of the coupled equations for transverse field components). The result is a numerical method that is both computationally efficient and numerically robust. The proposed BPM formalism is applied to investigate a (nonreciprocal) magnetooptic rib waveguide, as well as the new striking phenomena of light condensates propagation in cubic-quintic (saturable) media, the dynamics of which resemble those of liquid droplets.

Published in:

Lightwave Technology, Journal of  (Volume:23 ,  Issue: 8 )

Date of Publication:

Aug. 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.