By Topic

Wannier basis design and optimization of a photonic crystal waveguide crossing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Jiao, Y. ; Dept. of Electr. Eng., Stanford Univ., CA, USA ; Mingaleev, Sergei F. ; Schillinger, M. ; Miller, D.A.B.
more authors

We employ a novel platform for the realization of tunable photonic crystal (PC) circuits together with a Wannier basis modeling and optimization scheme in order to design a broad-band waveguide crossing. The superior performance characteristics of our design include a high bandwidth (2% of the center frequency) as well as low values for crosstalk (-40 dB) and reflection (-30 dB). In addition, we demonstrate the robustness of the device performance against fabrication disorder. Our novel design paradigm will enable efficient and ultracompact PC-based device designs with complex functionalities.

Published in:

Photonics Technology Letters, IEEE  (Volume:17 ,  Issue: 9 )