Cart (Loading....) | Create Account
Close category search window
 

High-power GaN-mirror-Cu light-emitting diodes for vertical current injection using laser liftoff and electroplating techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Lin, W.Y. ; Dept. of Mater. Eng., Nat. Chung Hsing Univ., Taichung, Taiwan ; Wuu, D.S. ; Pan, K.F. ; Huang, S.H.
more authors

A large-area (1 × 1 mm) vertical conductive GaN-mirror-Cu light-emitting diode (LED) fabricated using the laser liftoff and electroplating techniques is demonstrated. Selective p-GaN top area was first electroplated by the thick copper film, and then an excimer laser was employed to separate the GaN thin film from the sapphire substrate. The luminance intensity of the vertical conductive p-side-down GaN-mirror-Cu LED presented about 2.7 times in magnitude as compared with that of the original GaN-sapphire LED (at 20 mA). The light output power for the GaN-mirror-Cu LED was about twofold stronger (at 500 mA). A more stable peak wavelength shift under high current injection was also observed.

Published in:

Photonics Technology Letters, IEEE  (Volume:17 ,  Issue: 9 )

Date of Publication:

Sept. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.