By Topic

Nitride-based LEDs with MQW active regions grown by different temperature profiles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Shoou-Jinn Chang ; Dept. of Electr. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan ; S. C. Wei ; Y. K. Su ; R. W. Chuang
more authors

Nitride-based light-emitting diodes (LEDs) with multiple quantum-well active regions were separately prepared by metal-organic vapor phase epitaxy in different temperature profiles. Compared with conventional samples, the reduced reverse leakage current and improved electrostatic discharge characteristics of the LEDs can both be achieved using temperature ramping and temperature cycling methods. However, using the temperature ramping may degrade the optical properties of devices due to desorption of In atoms and/or impurity incorporation. With an emission wavelength of 465 nm, the 20-mA output powers measured were 5.5, 6.0, and 7.9 mW for temperature ramping LED, conventional LED, and temperature cycling LED, respectively.

Published in:

IEEE Photonics Technology Letters  (Volume:17 ,  Issue: 9 )