Cart (Loading....) | Create Account
Close category search window
 

High-power optically pumped VECSEL using a double-well resonant periodic gain structure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Li Fan, ; Opt. Sci. Center, Univ. of Arizona, Tucson, AZ, USA ; Hader, J. ; Schillgalies, Marc ; Fallahi, M.
more authors

We present the design and fabrication of an optically pumped vertical-external-cavity surface-emitting lasers with double-well resonant periodic gain structure. Each double-well consists of two 4-nm-thick InGaAs strained quantum wells. The double-well provides optimum overlap between the quantum wells and the antinodes of the standing wave of laser signal at high-power and high-temperature operation. The structure is more tolerant to variation of the growth, processing, and operating temperature for maintaining high modal gain. For a 230-μm diameter pump spot, over 4-W continuous-wave output with a slope efficiency of 39% is demonstrated at 30°C without thermal rollover.

Published in:

Photonics Technology Letters, IEEE  (Volume:17 ,  Issue: 9 )

Date of Publication:

Sept. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.