Cart (Loading....) | Create Account
Close category search window
 

High-speed architectures for parallel long BCH encoders

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xinmiao Zhang ; Dept. of Electr. & Comput. Eng., Univ. of Minnesota, Minneapolis, MN, USA ; Parhi, K.K.

Long Bose-Chaudhuri-Hocquenghen (BCH) codes are used as the outer error correcting codes in the second-generation Digital Video Broadcasting Standard from the European Telecommunications Standard Institute. These codes can achieve around 0.6-dB additional coding gain over Reed-Solomon codes with similar code rate and codeword length in long-haul optical communication systems. BCH encoders are conventionally implemented by a linear feedback shift register architecture. High-speed applications of BCH codes require parallel implementation of the encoders. In addition, long BCH encoders suffer from the effect of large fanout. In this paper, three novel architectures are proposed to reduce the achievable minimum clock period for long BCH encoders after the fanout bottleneck has been eliminated. For an (8191, 7684) BCH code, compared to the original 32-parallel BCH encoder architecture without fanout bottleneck, the proposed architectures can achieve a speedup of over 100%.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:13 ,  Issue: 7 )

Date of Publication:

July 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.