By Topic

ATOMi: an algorithm for circuit partitioning into multiple FPGAs using time-multiplexed, off-chip, multicasting interconnection architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Young-Su Kwon ; Microsystems Technol. Lab., Massachusetts Inst. of Technol., Cambridge, MA, USA ; Chong-Min Kyung

Logic emulation is so far the fastest method to verify the system functionality in the gate level before chip fabrication. Field-programmable gate array (FPGA)-based logic emulator with large gate capacity generally comprises a large number of FPGAs or special processors connected in mesh or crossbar topology. However, gate utilization of FPGAs and speed of emulation are limited by the number of signal pins among FPGAs and the interconnection architecture of the logic emulator. This paper first describes a new interconnection architecture called TOMi (Time-multiplexed, Off-chip, Multicasting interconnection) and proposes a circuit partitioning algorithm called ATOMi (Algorithm for TOMi) for multi-FPGA system incorporating four to eight FPGAs where FPGAs are interconnected through TOMi. ATOMi reduces the number of off-chip signal transfers to optimize the performance for multi-FPGA system implemented by TOMi. Experimental results using Partitioning93 benchmarks show that, by adopting the proposed TOMi interconnection architecture along with ATOMi, the pin count is reduced to 14.4%-88.6% while the critical path delay is reduced to 66.1%-90.1% compared to traditional architectures including mesh, crossbar, and VirtualWire architecture.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:13 ,  Issue: 7 )