By Topic

On visualization and aggregation of nearest neighbor classifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ghosh, A.K. ; Theor. Stat. & Math. Unit, Indian Stat. Inst., Calcutta, India ; Chaudhuri, P. ; Murthy, C.A.

Nearest neighbor classification is one of the simplest and most popular methods for statistical pattern recognition. A major issue in k-nearest neighbor classification is how to find an optimal value of the neighborhood parameter k. In practice, this value is generally estimated by the method of cross-validation. However, the ideal value of k in a classification problem not only depends on the entire data set, but also on the specific observation to be classified. Instead of using any single value of k, this paper studies results for a finite sequence of classifiers indexed by k. Along with the usual posterior probability estimates, a new measure, called the Bayesian measure of strength, is proposed and investigated in this paper as a measure of evidence for different classes. The results of these classifiers and their corresponding estimated misclassification probabilities are visually displayed using shaded strips. These plots provide an effective visualization of the evidence in favor of different classes when a given data point is to be classified. We also propose a simple weighted averaging technique that aggregates the results of different nearest neighbor classifiers to arrive at the final decision. Based on the analysis of several benchmark data sets, the proposed method is found to be better than using a single value of k.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:27 ,  Issue: 10 )