By Topic

Adaptive smoothing via contextual and local discontinuities

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Ke Chen ; Sch. of Inf., Manchester Univ., UK

A novel adaptive smoothing approach is proposed for noise removal and feature preservation where two distinct measures are simultaneously adopted to detect discontinuities in an image. Inhomogeneity underlying an image is employed as a multiscale measure to detect contextual discontinuities for feature preservation and control of the smoothing speed, while local spatial gradient is used for detection of variable local discontinuities during smoothing. Unlike previous adaptive smoothing approaches, two discontinuity measures are combined in our algorithm for synergy in preserving nontrivial features, which leads to a constrained anisotropic diffusion process that inhomogeneity offers intrinsic constraints for selective smoothing. Thanks to the use of intrinsic constraints, our smoothing scheme is insensitive to termination times and the resultant images in a wide range of iterations are applicable to achieve nearly identical results for various early vision tasks. Our algorithm is formally analyzed and related to anisotropic diffusion. Comparative results indicate that our algorithm yields favorable smoothing results, and its application in extraction of hydrographic objects demonstrates its usefulness as a tool for early vision.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:27 ,  Issue: 10 )