By Topic

Guided-MLESAC: faster image transform estimation by using matching priors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tordoff, B.J. ; Dept. of Eng., Cambridge Univ., UK ; Murray, D.W.

MLESAC is an established algorithm for maximum-likelihood estimation by random sampling consensus, devised for computing multiview entities like the fundamental matrix from correspondences between image features. A shortcoming of the method is that it assumes that little is known about the prior probabilities of the validities of the correspondences. This paper explains the consequences of that omission and describes how the algorithm's theoretical standing and practical performance can be enhanced by deriving estimates of these prior probabilities. Using the priors in guided-MLESAC is found to give an order of magnitude speed increase for problems where the correspondences are described by one image transformation and clutter. This paper describes two further modifications to guided-MLESAC. The first shows how all putative matches, rather than just the best, from a particular feature can be taken forward into the sampling stage, albeit at the expense of additional computation. The second suggests how to propagate the output from one frame forward to successive frames. The additional information makes guided-MLESAC computationally realistic at video-rates for correspondence sets modeled by two transformations and clutter.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:27 ,  Issue: 10 )