By Topic

A delay analysis for opportunistic transmission in fading broadcast channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sharif, M. ; Dept. of Electr. Eng., California Inst. of Technol., Pasadena, CA, USA ; Hassibi, B.

We consider a single-antenna broadcast block fading channel (downlink scheduling) with n users where the transmission is packet-based and all users are backlogged. We define the delay as the minimum number of channel uses that guarantees all n users successfully receive m packets. This is a more stringent notion of delay than average delay and is the worst case delay among the users. A delay optimal scheduling scheme, such as round-robin, achieves the delay of mn. In a heterogeneous network and for the optimal throughput strategy where the transmitter sends the packet to the user with the best channel conditions, we derive the moment generating-function of the delay for any m and n. For large n and in a homogeneous network, the expected delay in receiving one packet by all the receivers scales as n logn, as opposed to n for the round-robin scheduling. We also show that when m grows faster than (logn)r, for some r>1, then the expected value of delay scales like mn. This roughly determines the time-scale required for the system to behave fairly in a homogeneous network. We then propose a scheme to significantly reduce the delay at the expense of a small throughput hit. We further look into two generalizations of our work: i) the effect of temporal channel correlation and ii) the advantage of multiple transmit antennas on the delay. For a channel with memory of two, we prove that the delay scales again like n logn no matter how severe the correlation is. For a system with M transmit antennas, we prove that the expected delay in receiving one packet by all the users scales like n log n/(M+O(M2/n)) for large n when M is not growing faster than logn. Thus, when the temporal channel correlation is zero, multiple transmit antenna systems do not reduce the delay significantly. However, when channel correlation is present, they can lead to significant gains by "decorrelating" the effective channel through means such as random beamforming.

Published in:

INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings IEEE  (Volume:4 )

Date of Conference:

13-17 March 2005