Cart (Loading....) | Create Account
Close category search window
 

A class of reliable UDP-based transport protocols based on stochastic approximation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Qishi Wu ; Comput. Sci. & Math. Div., Oak Ridge Nat. Lab., TN, USA ; Rao, N.S.V.

The capacities of Internet backbone links have been continuously improving over the last decade, but such improvements have not been fully realized at the application level, particularly in high-performance applications. The complicated and monolithic TCP-AIMD dynamics are responsible to a large degree for low throughputs as a result of the difficulty in optimally configuring its parameters such as buffer sizes, AIMD coefficients, and slow-start transition points. In this paper, we propose a new class of UDP-based transport protocols that utilize a rate control scheme founded on the stochastic approximation method to achieve high throughputs at the application level. These protocols operate around a local maximum of the throughput regression curve by dynamically adjusting the source rate in response to acknowledgements and losses based on the statistical behavior of the network connection. We analytically show that this protocol generates a TCP-friendly flow, and also stochastically converges to the maximum throughput under a monotone loss rate condition. Our implementation achieved very robust performance over diverse Internet connections with different characteristics: it tracked the peak throughput in presence of time-varying cross traffic and consistently achieved 2-5 times the throughput of default TCP without significantly affecting the concurrent regular traffic.

Published in:

INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings IEEE  (Volume:2 )

Date of Conference:

13-17 March 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.