By Topic

Online identification and control of linearized aircraft dynamics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rusnak, I. ; Dept. of Electr. & Comput. Eng., Drexel Univ., Philadelphia, PA, USA ; Guez, A. ; Bar-Kana, I. ; Steinberg, M.

An approach for online identification and control that requires weaker excitation than the existing approaches based on least-squares schemes and closed-loop systems is examined. It uses multiple-objective optimization theory to resolve the conflict between identification and controller performance as they compete for the only available resource, the inputs to the aircraft. The approach is applied to a longitudinal model of a representative linearized high-performance aircraft model. Simulation results compare the final controller with a conventional gain-scheduled pitch command augmentation system. It is demonstrated that by allowing some control input to be given to the identification process, the controller's overall performance is improved.<>

Published in:

Aerospace and Electronic Systems Magazine, IEEE  (Volume:7 ,  Issue: 7 )