By Topic

GLIDER: gradient landmark-based distributed routing for sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Qing Fang ; Dept. of Electr. Eng., Stanford Univ., CA, USA ; Jie Gao ; Guibas, L.J. ; de Silva, V.
more authors

We present gradient landmark-based distributed routing (GLIDER), a novel naming/addressing scheme and associated routing algorithm, for a network of wireless communicating nodes. We assume that the nodes are fixed (though their geographic locations are not necessarily known), and that each node can communicate wirelessly with some of its geographic neighbors - a common scenario in sensor networks. We develop a protocol which in a preprocessing phase discovers the global topology of the sensor field and, as a byproduct, partitions the nodes into routable tiles - regions where the node placement is sufficiently dense and regular that local greedy methods can work well. Such global topology includes not just connectivity but also higher order topological features, such as the presence of holes. We address each node by the name of the tile containing it and a set of local coordinates derived from connectivity graph distances between the node and certain landmark nodes associated with its own and neighboring tiles. We use the tile adjacency graph for global route planning and the local coordinates for realizing actual inter- and intra-tile routes. We show that efficient load-balanced global routing can be implemented quite simply using such a scheme.

Published in:

INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings IEEE  (Volume:1 )

Date of Conference:

13-17 March 2005