By Topic

A beacon-less location discovery scheme for wireless sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lei Fang ; Dept. of Electr. Eng., Syracuse Univ., NY, USA ; Wenliang Du ; Peng Ning

In wireless sensor networks (WSNs), sensor location plays a critical role in many applications. Having a GPS receiver on every sensor node is costly. In the past, a number of location discovery schemes have been proposed. Most of these schemes share a common feature: they use some special nodes, called beacon nodes, which are assumed to know their own locations (e.g., through GPS receivers or manual configuration). Other sensors discover their locations based on the information provided by these beacon nodes. In this paper, we show that efficient location discovery can be achieved in sensor networks without using beacons. We propose a beacon-less location discovery scheme, based on the following observations: in practice, it is quite common that sensors are deployed in groups, i.e., sensors are put into n groups, and sensors in the same group are deployed together at the same deployment point (the deployment point is different from the sensors' final resident location). Sensors from the same group can land in different locations, and those locations usually follow a probability distribution that can be known a priori. With this prior deployment knowledge, we show that sensors can discover their locations by observing the group memberships of its neighbors. We model the location discovery problem as a statistical estimation problem, and we use the maximum likelihood estimation method to estimate the location. We have conducted experiments to evaluate our scheme.

Published in:

INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings IEEE  (Volume:1 )

Date of Conference:

13-17 March 2005