By Topic

Cross-layer wireless multimedia transmission: challenges, principles, and new paradigms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
van der Schaar, M. ; California Univ., Davis, CA, USA ; Sai Shankar N

Wireless networks are poised to enable a variety of existing and emerging multimedia streaming applications. As the use of wireless local area networks spreads beyond simple data transfer to bandwidth-intense, delay-sensitive, and loss-tolerant multimedia applications, addressing quality of service issues become extremely important. Currently, a multitude of protection and adaptation strategies exists in the different layers of the open systems interconnection (OSI) stack. Hence, an in-depth understanding and comparative evaluation of these strategies are necessary to effectively assess and enable the possible trade-offs in multimedia quality, power consumption, implementation complexity, and spectrum utilization that are provided by the various OSI layers. This further opens the question of cross-layer optimization and its effectiveness in providing an improved solution with respect to the above trade-offs. In this article we formalize the cross-layer problem, discuss its challenges, and present several possible solutions. Moreover, we also discuss the impact the cross-layer optimization strategy deployed at one station has on the multimedia performance of other stations. We introduce a new fairness concept for wireless multimedia systems that employs different cross-layer strategies, and show its advantages when compared to existing resource allocation mechanisms used in wireline communications. Finally, we propose a new paradigm for wireless communications based on competition, which allows wireless stations to harvest additional resources or free up resources as well as optimally and dynamically adapt their cross-layer transmission strategies to improve multimedia quality and/or power consumption.

Published in:

Wireless Communications, IEEE  (Volume:12 ,  Issue: 4 )