By Topic

3D studio production of animated actor models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hilton, A. ; Centre for Vision, Univ. of Surrey, Guildford, UK ; Kalkavouras, M. ; Collins, G.

A framework for constructing detailed animated models of an actor's shape and appearance from multiple view images is presented. Multiple views of an actor are captured in a studio with controlled illumination and background. An initial low-resolution approximation of the person's shape is reconstructed by deformation of a generic humanoid model to fit the visual hull using shape constrained optimisation to preserve the surface parameterisation for animation. Stereo reconstruction with multiple view constraints is then used to reconstruct the detailed surface shape. High-resolution shape detail from stereo is represented in a structured format for animation by displacement mapping from the low-resolution model surface. A novel integration algorithm using displacement maps is introduced to combine overlapping stereo surface measurements from multiple views into a single displacement map representation of the high-resolution surface detail. Results of 3D actor modelling in a 14 camera studio demonstrate improved representation of detailed surface shapes, such as creases in clothing, compared to previous model fitting approaches. Actor models can be animated and rendered from arbitrary views under different illumination to produce free-viewpoint video sequences. The proposed framework enables rapid transformation of captured multiple view images into a structured representation suitable for realistic animation.

Published in:

Vision, Image and Signal Processing, IEE Proceedings -  (Volume:152 ,  Issue: 4 )