By Topic

Shadow-aware object-based video processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cavallaro, A. ; Multimedia & Vision Lab., Univ. of London, UK ; Salvador, E. ; Ebrahimi, T.

Local illumination changes due to shadows often reduce the quality of object-based video composition and mislead object recognition. This problem makes shadow detection a desirable tool for a wide range of applications, such as video production and visual surveillance. In this paper, an algorithm for the isolation of video objects from the local illumination changes they generate in real world sequences when camera, illumination and the scene characteristics are not known is presented. The algorithm combines a change detector and a shadow detector with a spatio-temporal verification stage. Colour information and spatio-temporal constraints are embedded to define the overall algorithm. Colour information is exploited in a selective way. First, relevant areas to analyse are identified in each image. Then, the colour components that carry most of the needed information are selected. Finally, spatial and temporal constraints are used to verify the results of the colour analysis. The proposed algorithm is demonstrated on both indoor and outdoor video sequences. Moreover, performance comparisons show that the proposed algorithm outperforms state-of-the-art methods.

Published in:

Vision, Image and Signal Processing, IEE Proceedings -  (Volume:152 ,  Issue: 4 )